

NOMADe

AVEC LE SOUTIEN DU FONDS EUROPÉEN DE DÉVELOPPEMENT RÉGIONAL MET STEUN VAN HET EUROPEES FONDS VOOR REGIONALE ONTWIKKELING

Projet N° 4.7.360 - Project N° 4.7.360

N(E)MADe

KU LEUVEN

Maretak

Fine adaptive control of precision grip after median nerve mobilization

Frédéric Dierick

16/10/21

Hemofilievereniging Association de Ditemonhilie

BBS

60 CONGRES DE LA SOCIÉTÉ FRANÇAISE DE MÉDECINE PHYSIQUE ET DE RÉADAPTATION

www.sofmer.com

CeREF

Teamwork

Fine adaptive precision grip control without maximum pinch strength changes after upper limb neurodynamic mobilization

Frédéric Dierick^{1,2,3⊠}, Jean-Michel Brismée⁴, Olivier White^{5,6}, Anne-France Bouché⁷, Céline Périchon³, Nastasia Filoni³, Vincent Barvaux³ & Fabien Buisseret^{3,8}

Scientific Reports | (2021) 11:14009 | https://doi.org/10.1038/s41598-021-93036-8

nature portfolio

Introduction

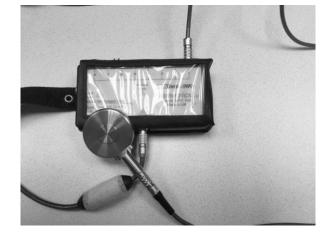
- Median nerve: key player in hand function
- Role of median nerve in precision grip control (healthy subjects)
 - Microneurography, anesthetic blocks (wrist, hand)
 - Scaling of grip force (GF), coupling GF-Load force (LF)
- Role of median nerve in precision grip control (carpal tunnel syndrome)
- OMPT: UL neurodynamic mobilizations for median nerve (ULNT1)
- Effects of tension and sliding on median nerve is unclear
- Objective: explore physiological grip (3-jaw chuck pinch) responses, maximum pinch strength and fingertips pressure sensation tresholds (thumb, index, major) before and immediately after ULNT1

Methods: participants

- 49 students recruited, 40 students included
 - 24 males, 16 females
 - Age: 26±2 years
 - 34 right-handed, 6 left-handed
- Inclusion: 18-30 years, no neck and dominant UL symptoms
- Exclusion (n=9): DASH>1

Methods: ULNT1 maneuver

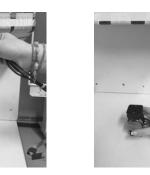
- Randomly received passive ULNT1 maneuver:
 - sliding (n=20), tensioning (n=20)
- Elbow slowly extended to the point of pain tolerance, a position of the elbow located at submaximal pain
 - "the position at which pain or tingling increased and the participant wanted the extension movement to be ceased"
- 20 repetitions

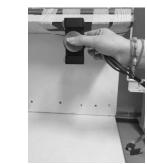


ULNT1

Methods: pinch strength & fingertips pressure sensation treshold

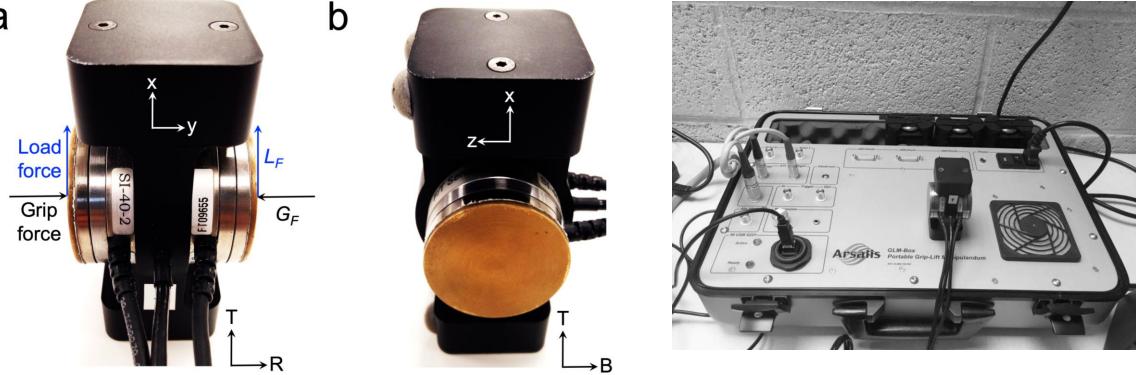
- 3-jaw chuck (palmar) pinch
- Maximum vouluntary pinch strength of dominant hand


- Semmes-Weinstein monofilament testing
- Fingertips of thumb, index, major fingers
- Smallest monofilament recoded

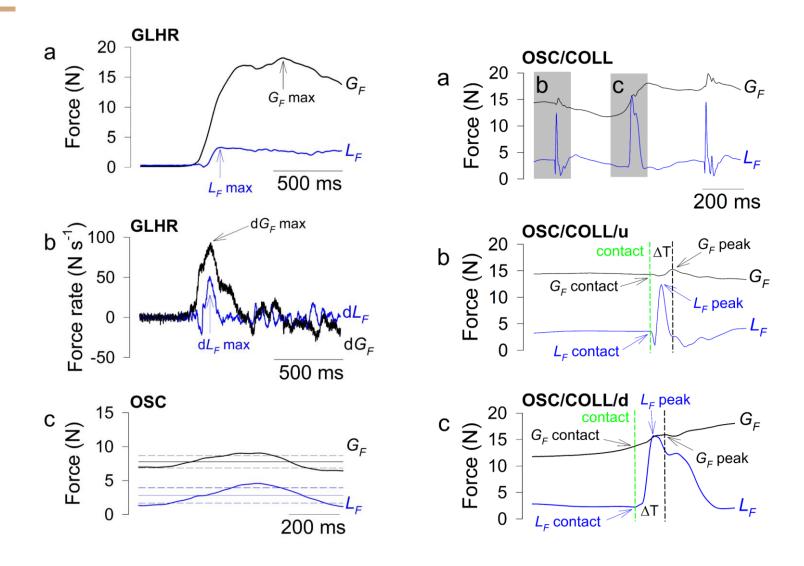

Methods: 3 precision grip control tasks

Grip-lift-hold-replace (GLHR)

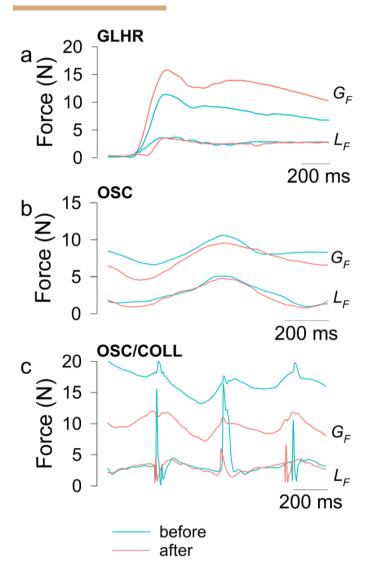
Oscillations (OSC)



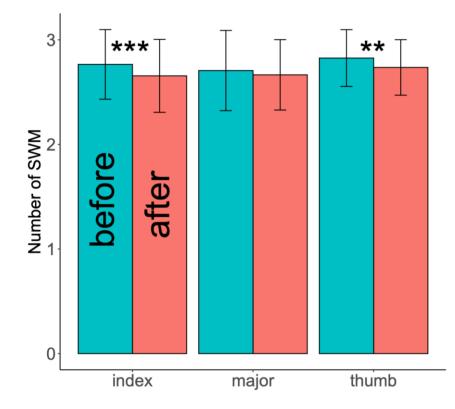
Ocsillations with collisions (OSC/COLL)



Methods: precision grip control assessment



Methods: precision grip control metrics



Results

Variable	Before (Mean ± SD)	After (mean ± SD)	F value	<i>p</i> value
Pinch strength				
Maximum force (<i>kg</i>)	8.1 ± 2.0	8.4 ± 2.2	2.12	0.153
Grip-lift-hold-replace	(GLHR)			
$G_F \max(N)$	15.2 ± 13.4	15.0 ± 11.1	0.03	0.86
$L_F \max(N)$	3.2 ± 0.4	3.4 ± 0.4	6.66	0.014
$dG_F \max(N \text{ s}^{-1})$	89.0 ± 66.6	106.2 ± 59.6	7.54	0.009
$dL_F \max(N \text{ s}^{-1})$	43.6 ± 17.0	56.0 ± 17.9	19.56	<0.001
Oscillations (OSC)				
G_F mean (N)	8.1 ± 4.0	8.1 ± 4.7	0.001	0.974
L_F mean (N)	2.3 ± 0.2	2.4 ± 0.3	2.59	0.116
$G_F $ SD (N)	1.8 ± 1.5	1.8 ± 1.6	0.004	0.951
L_F SD (N)	0.9 ± 0.3	1.0 ± 0.2	9.34	0.004
Oscillations with up c	ollisions (OSC/COLL/u)		
G_F peak (N)	13.3 ± 7.1	12.5 ± 7.3	1.39	0.245
L_F peak (N)	17.4 ± 8.3	15.1 ± 7.5	15.35	<0.001
G_F contact (N)	12.4 ± 6.7	11.3 ± 6.8	4.88	0.033
L_F contact (N)	2.9 ± 0.4	3.0 ± 0.4	6.14	0.018
$\Delta T (ms)$	74.9 ± 39.8	74.6 ± 32.9	0.003	0.956
Oscillations with dow	n collisions (OSC/COLI	L/d)		
G_F peak (N)	13.5 ± 7.4	12.3 ± 7.7	5.05	0.030
L_F peak (N)	14.5 ± 6.0	13.6 ± 5.5	6.11	0.018
G_F contact (N)	11.7 ± 6.7	10.5 ± 6.8	3.02	0.090
L_F contact (N)	2.3 ± 0.8	2.4 ± 0.9	0.128	0.722
$\Delta T (ms)$	45.4 ± 30.4	46.8 ± 30.3	0.212	0.648

Results

Discussion

- Intended to capture immediate effects of ULNT1
- 3 motor tasks: dynamics of object (GLHR), UL (OSC), both (OSC/COLL)
- Feedforward and feedback mechanisms used by CNS
 - Internal models to anticipate LF and adjusting GF
 - Sensory input (mechanoreceptors in fingertips)
- Decrease of pressure sensation treshold and fine modifications of precision grip control (mainly LF and dLF): predictive feedforward mechanism modified after ULNT1
- Since elder people favor feedforward mechanisms: future studies exploring effects of ULNT1 in patients with CTS must focus on active and reactive collision paradigms

NOMADe

AVEC LE SOUTIEN DU FONDS EUROPÉEN DE DÉVELOPPEMENT RÉGIONAL MET STEUN VAN HET EUROPEES FONDS VOOR REGIONALE ONTWIKKELING

Projet N° 4.7.360 - Project N° 4.7.360

N(E)MADe

ECOSYSTÈME D'APPRENTISSAGE, R&D ET EXPERTISE TRANSFRONTALIER DÉDIÉ AUX TROUBLES NEURO-MUSCULO-SQUELETTIQUES LEERECOSYSTEEM, O&O EN GRENSOVERSCHRIJDENDE EXPERTISE GEWIJD AAN NEURO-MUSCULOSKELETALE AANDOENINGEN

